|| Overview

In Hugo et al. 2009, the deuteration of H_{3} was investigated in an ion trap at 13.5 K . The key reactions and their rates are:

$$
\begin{align*}
\mathrm{H}_{3}{ }^{+}+\mathrm{HD} \longrightarrow \mathrm{H}_{2} \mathrm{D}^{+}+\mathrm{H}_{2} & \text { Rate }=k_{1}^{(2)}[\mathrm{HD}]\left[\mathrm{H}_{3}{ }^{+}\right] \tag{1}\\
\mathrm{H}_{2} \mathrm{D}^{+}+\mathrm{HD} \longrightarrow \mathrm{D}_{2} \mathrm{H}^{+}+\mathrm{H}_{2} & \text { Rate }=k_{2}^{(2)}[\mathrm{HD}]\left[\mathrm{H}_{2} \mathrm{D}^{+}\right] \tag{2}\\
\mathrm{D}_{2} \mathrm{H}^{+}+\mathrm{HD} \longrightarrow \mathrm{D}_{3}{ }^{+}+\mathrm{H}_{2} & \text { Rate }=k_{3}^{(2)}[\mathrm{HD}]\left[\mathrm{D}_{2} \mathrm{H}^{+}\right] \tag{3}
\end{align*}
$$

In these equations, brackets indicate the number density $\left(\mathrm{cm}^{-3}\right)$, and the $k_{n}^{(2)}$ refer to second-order rate coefficients in units of $\mathrm{cm}^{3} \mathrm{~s}^{-1}$ so that the rate has units of $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$. At the low temperature, the reverse reactions are negligible. Furthermore, under the experimental conditions, HD is present in excess, and it is reasonable to treat $[\mathrm{HD}]$ as constant. Under these pseudo-first-order conditions, we can redefine the rate coefficients

$$
\begin{equation*}
k_{n} \equiv k_{n}^{(2)}[\mathrm{HD}] \tag{4}
\end{equation*}
$$

Using the rates above, we obtain a set of coupled differential equations describing the time evolution of the number densities.

$$
\begin{align*}
\frac{\mathrm{d}\left[\mathrm{H}_{3}^{+}\right]}{\mathrm{d} t} & =-k_{1}\left[\mathrm{H}_{3}^{+}\right] \tag{5}\\
\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]}{\mathrm{d} t} & =k_{1}\left[\mathrm{H}_{3}{ }^{+}\right]-k_{2}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right] \tag{6}\\
\frac{\mathrm{d}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]}{\mathrm{d} t} & =k_{2}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]-k_{3}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right] \tag{7}\\
\frac{\mathrm{d}\left[\mathrm{D}_{3}^{+}\right]}{\mathrm{d} t} & =k_{3}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right] \tag{8}
\end{align*}
$$

$\|$ Solving For $\left[\mathrm{H}_{3}{ }^{+}\right]$

Solving for $\left[\mathrm{H}_{3}{ }^{+}\right](t)$ involved simply a normal first-order integrated rate equation. Rearranging Equation (5):

$$
\begin{align*}
\frac{\mathrm{d}\left[\mathrm{H}_{3}{ }^{+}\right]}{\left[\mathrm{H}_{3}^{+}\right]} & =-k_{1} \mathrm{~d} t \\
\ln \left[\mathrm{H}_{3}^{+}\right](t) & =-k_{1} t+C \\
{\left[\mathrm{H}_{3}^{+}\right](t) } & =A e^{-k_{1} t} \tag{9}
\end{align*}
$$

At $t=0,\left[\mathrm{H}_{3}{ }^{+}\right]=\left[\mathrm{H}_{3}^{+}\right]_{0}$, so

$$
\begin{equation*}
\left[\mathrm{H}_{3}{ }^{+}\right](t)=\left[\mathrm{H}_{3}{ }^{+}\right]_{0} e^{-k_{1} t} \tag{10}
\end{equation*}
$$

$\|$ Solving for $\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]$

To solve for the time evolution of $\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]$, we substitute the result of Equation (10) into Equation (6) and rearrange:

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]}{\mathrm{d} t}+k_{2}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]=k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0} e^{-k_{1} t} \tag{11}
\end{equation*}
$$

To make progress, we introduce a new variable μ :

$$
\begin{equation*}
\mu \equiv e^{k_{2} t}, \quad \frac{\mathrm{~d} \mu}{\mathrm{~d} t}=k_{2} e^{k_{2} t} \tag{12}
\end{equation*}
$$

Now we multiply both sides of Equation (11) by μ to get

$$
\begin{equation*}
\mu \frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]}{\mathrm{d} t}+\left[\mathrm{H}_{2} \mathrm{D}^{+}\right] \frac{\mathrm{d} \mu}{\mathrm{~d} t}=k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0} e^{-\left(k_{1}-k_{2}\right) t} \tag{13}
\end{equation*}
$$

From the definition of the product rule for derivatives:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mu\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]\right)=\mu \frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]}{\mathrm{d} t}+\left[\mathrm{H}_{2} \mathrm{D}^{+}\right] \frac{\mathrm{d} \mu}{\mathrm{~d} t} \tag{14}
\end{equation*}
$$

Substitute into Equation (13) and integrate:

$$
\begin{align*}
\int \frac{\mathrm{d}}{\mathrm{~d} t}\left(\mu\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]\right) \mathrm{d} t & =\int k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0} e^{-\left(k_{1}-k_{2}\right) t} \mathrm{~d} t \\
\mu\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t) & =\frac{k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}} e^{-\left(k_{1}-k_{2}\right) t}+C \\
{\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t) } & =\frac{k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}} e^{-k_{1} t}+C e^{-k_{2} t} \tag{15}
\end{align*}
$$

To evaluate C, we use the boundary condition that at $t=0,\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]=0$, and therefore

$$
\begin{equation*}
0=\frac{k_{1}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}+C, \quad C=-\frac{k_{1}\left[\mathrm{H}_{3}{ }^{+}\right]_{0}}{k_{2}-k_{1}} \tag{16}
\end{equation*}
$$

Substituting, we obtain the integrated rate equation for $\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t)$:

$$
\begin{equation*}
\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t)=\frac{k_{1}\left[\mathrm{H}_{3}{ }^{+}\right]_{0}}{k_{2}-k_{1}}\left(e^{-k_{1} t}-e^{-k_{2} t}\right) \tag{17}
\end{equation*}
$$

However, note that if $k_{1}=k_{2} \equiv k$, the denominator goes to 0 . Looking back, Equation (13) becomes instead

$$
\begin{equation*}
\mu \frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]}{\mathrm{d} t}+\left[\mathrm{H}_{2} \mathrm{D}^{+}\right] \frac{\mathrm{d} \mu}{\mathrm{~d} t}=k\left[\mathrm{H}_{3}^{+}\right]_{0} \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
\int \frac{\mathrm{d}}{\mathrm{~d} t}\left(\mu\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]\right) \mathrm{d} t & =\int k\left[\mathrm{H}_{3}^{+}\right]_{0} \mathrm{~d} t \\
\mu\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t) & =k\left[\mathrm{H}_{3}^{+}\right]_{0} k t+C \\
{\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t) } & =\left[\mathrm{H}_{3}^{+}\right]_{0} k t e^{-k t}+C e^{-k t} \tag{19}
\end{align*}
$$

Again, at $t=0,\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]=0$, so $C=0$. The final result is therefore

$$
\begin{equation*}
\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t)=\left[\mathrm{H}_{3}{ }^{+}\right]_{0} k t e^{-k t}, \quad\left(k=k_{1}=k_{2}\right) \tag{20}
\end{equation*}
$$

$\|$ Solving for $\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]$

The procedure is essentially the same as for $\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]$. First, substitute Equation (17) into Equation (7) and rearrange:

$$
\begin{equation*}
\frac{\mathrm{d}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]}{\mathrm{d} t}+k_{3}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]=\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(e^{-k_{1} t}-e^{-k_{2} t}\right) \tag{21}
\end{equation*}
$$

As before, we introduce the variable μ and its derivative:

$$
\begin{equation*}
\mu \equiv e^{k_{3} t}, \quad \frac{\mathrm{~d} \mu}{\mathrm{~d} t}=k_{3} e^{k_{3} t} \tag{22}
\end{equation*}
$$

Multiplying both sides of Equation (21) by μ, we obtain (just like before):

$$
\begin{align*}
\mu \frac{\mathrm{d}\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]}{\mathrm{d} t}+\left[\mathrm{D}_{2} \mathrm{H}^{+}\right] \frac{\mathrm{d} \mu}{\mathrm{~d} t} & =\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(e^{-\left(k_{1}-k_{3}\right) t}-e^{-\left(k_{2}-k_{3}\right) t}\right) \\
\int \frac{\mathrm{d}}{\mathrm{~d} t}\left(\mu\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]\right) & =\int \frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(e^{-\left(k_{1}-k_{3}\right) t}-e^{-\left(k_{2}-k_{3}\right) t}\right) \\
\mu\left[\mathrm{D}_{2} \mathrm{H}^{+}\right](t) & =\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(\frac{e^{-\left(k_{1}-k_{3}\right) t}}{k_{3}-k_{1}}-\frac{e^{-\left(k_{2}-k_{3}\right) t}}{k_{3}-k_{2}}\right)+C \\
{\left[\mathrm{D}_{2} \mathrm{H}^{+}\right](t) } & =\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(\frac{e^{-k_{1} t}}{k_{3}-k_{1}}-\frac{e^{-k_{2} t}}{k_{3}-k_{2}}\right)+C e^{-k_{2} t} \tag{23}
\end{align*}
$$

The boundary condition is at $t=0,\left[\mathrm{D}_{2} \mathrm{H}^{+}\right]=0$, so

$$
\begin{equation*}
C=-\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(\frac{1}{k_{3}-k_{1}}-\frac{1}{k_{3}-k_{2}}\right) \tag{24}
\end{equation*}
$$

So the final result is

$$
\begin{equation*}
\left[\mathrm{D}_{2} \mathrm{H}^{+}\right](t)=\frac{k_{1} k_{2}\left[\mathrm{H}_{3}^{+}\right]_{0}}{k_{2}-k_{1}}\left(\frac{e^{-k_{1} t}-e^{-k_{3} t}}{k_{3}-k_{1}}-\frac{e^{-k_{2} t}-e^{-k_{3} t}}{k_{3}-k_{2}}\right) \tag{25}
\end{equation*}
$$

Note that if $k_{1}=k_{2}$ or $k_{1}=k_{3}$ or $k_{2}=k_{3}$, we would have to rederive an alternative form of this equation like we did for $\left[\mathrm{H}_{2} \mathrm{D}^{+}\right]$. We will not do that here.

$\|$ Solving For $\left[\mathrm{D}_{3}{ }^{+}\right]$

This one is very easy. Using conservation of mass, we know that

$$
\begin{equation*}
\left[\mathrm{H}_{3}^{+}\right](t)+\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t)+\left[\mathrm{D}_{2} \mathrm{H}^{+}\right](t)+\left[\mathrm{D}_{3}^{+}\right](t)=\left[\mathrm{H}_{3}^{+}\right]_{0} \tag{26}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left[\mathrm{D}_{3}{ }^{+}\right](t)=\left[\mathrm{H}_{3}{ }^{+}\right]_{0}-\left[\mathrm{H}_{3}{ }^{+}\right](t)-\left[\mathrm{H}_{2} \mathrm{D}^{+}\right](t)-\left[\mathrm{D}_{2} \mathrm{H}^{+}\right](t) \tag{27}
\end{equation*}
$$

where we can insert Equations (10), (17), and (25).

